Electrical Coupling between Olfactory Glomeruli
نویسندگان
چکیده
منابع مشابه
Electrical Coupling between Olfactory Glomeruli
In the Drosophila antennal lobe, excitation can spread between glomerular processing channels. In this study, we investigated the mechanism of lateral excitation. Dual recordings from excitatory local neurons (eLNs) and projection neurons (PNs) showed that eLN-to-PN synapses transmit both hyperpolarization and depolarization, are not diminished by blocking chemical neurotransmission, and are ab...
متن کاملZinc released from olfactory bulb glomeruli by patterned electrical stimulation of the olfactory nerve.
Zinc is a trace element with a multitude of roles in biological systems including structural and cofactor functions for proteins. Although most zinc in the central nervous system (CNS) is protein bound, the CNS contains a pool of mobile zinc housed in synaptic vesicles within a subset of neurons. Such mobile zinc occurs in many brain regions, such as the hippocampus, hypothalamus, and cortex, b...
متن کاملElectrical Coupling between Mammalian Cones
BACKGROUND Cone photoreceptors are noisy because of random fluctuations of photon absorption, signaling molecules, and ion channels. However, each cone's noise is independent of the others, whereas their signals are partially shared. Therefore, electrically coupling the synaptic terminals prior to forward transmission and subsequent nonlinear processing can appreciably reduce noise relative to ...
متن کاملElectrical coupling in sustentacular cells of the mouse olfactory epithelium.
Sustentacular cells (SCs) line the apical surface of the olfactory epithelium (OE) and provide trophic, metabolic, and mechanical support for olfactory receptor neurons. Morphological studies have suggested that SCs possess gap junctions, although physiological evidence for gap junctional communication in mammalian SCs is lacking. In the present study we investigated whether coupling exists bet...
متن کاملPlasticity of astroglial networks in olfactory glomeruli.
Several recent findings have shown that neurons as well as astrocytes are organized into networks. Indeed, astrocytes are interconnected through connexin-formed gap junction channels allowing exchanges of ions and signaling molecules. The aim of this study is to characterize astrocyte network properties in mouse olfactory glomeruli where neuronal connectivity is highly ordered. Dye-coupling exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2010
ISSN: 0896-6273
DOI: 10.1016/j.neuron.2010.08.041